Approximation theorem for meyer - konig - zeller operator 算子的逼近定理
Iterative approximation theorem on solutions to nonlinear strongly accretive operator equations 非线性强增生算子方程解的迭代逼近定理
In this paper , we use the coupled fixed point theorem for mixed monotone condensing operators to obtain an existence , uniqueness and iterative approximation theorem of solutions of initial value problems for second order mixed monotone type of impulsive differential equations 利用混合单调凝聚算子的耦合不动点定理,给出了二阶混合单调型脉冲微分方程的初值问题的解的存在唯一性及迭代逼近定理
Secondly , using the relation between the weighted modified k - functional , the weighted modulus of smoothness , the weighted main - part modulus of smoothness . we get the pointwise direct and inverse approximation theorem with jacobi weight for s ' zdsz - kantorovich operator . thus some results on w ( x ) = 0 ( w ( x ) denotes the weight function ) , ditzian - totik modulus and classic modulus are extend 其次,引入一种改变的带权k -泛函,利用带权光滑模和带权主部光滑的关系及带权光滑模与改变带权k -泛函的等价性,关于sz sz - kantorovich算子,讨论了一阶矩不为零的算子的点态带jacobi权逼近正定理及等价定理,推广了已有的权为零及ditzian - totik光滑模和古典光滑模的结果。